e.g. matrix Lie grwps GL(n,R), SL(n,R), OL(n) U(n) U(n), Sp(zn), ...
(identity them with subsets in
$$
\mathbb{R}^m
$$
 and matrix product \Leftrightarrow smuveh
in \mathbb{R}^m

Fat Ado Iwasawa Every connected lie group can be almost embedded into GL ⁿ ¹¹² for some ⁿ

eg such maps between lie groups Fix ^g ^e ^G g ^G ^G multiplication by g onthelf fix g EG Lg ^G ^G ^x g ^x g F G G smooth map between ntds ^t group homomorphism such F is called ^a Liegmphimomurphis Ruf Lie group homomorphism opens ^a door transferringfromgeoto alg local determining theorem later **c(g) \cdot x = gxg^{-1}**

(a) reduction (from a Lie group action).

\n– Gmap action G
$$
W
$$
 means an assignment σ : G \rightarrow Diff (W)

\n• . If W means an assignment σ : G \rightarrow Diff (W)

\n• . If W and W is a triangle of W and W is a function, \forall G is a Lie group, we also require $GxM \rightarrow M$ by

\n• . If W is a smooth map.

7 Identify,
$$
qmp
$$
 action $G \circ M$ embedes to split M in the the following structure

\n
$$
M = \bigcup_{x \in M} \underbrace{C^{f_{:} \{x\}}_{x \in M} = \text{orbit space } \varphi_{x, x, \zeta}}_{\text{In other words, M split into many copies of } G.
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta} = \text{const}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta} = \text{const}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta} = \text{const}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const} \circ \varphi_{x, \zeta} = \text{const}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text{const}
$$
\n
$$
G \circ M \circ \varphi_{x, \zeta} = \text
$$

south pole.

\n
$$
G_{\infty} \cup M
$$
 is called free if $\forall x \in M$, the s-
\n
$$
G_{\infty} = \{g \in G | g \cdot x = x\} = \{e\}
$$
\n

\n\n
$$
G_{\infty} = \{g \in G | g \cdot x = x\} = \{e\}
$$
\n

\n\n
$$
G_{\infty} \cup G_{\infty}
$$
 and
$$
G_{\infty} \cup G_{\infty}
$$
 for a P is a P such poles.\n

\n\n
$$
G_{\infty} \cup G_{\infty}
$$
 is the G_{∞} such that G_{∞} is the G_{∞} such

Thus, For GVM where G is a
$$
cpt
$$
 Lie group and action is
\nfree, then M/G := quartient manifold with eqn relation
\n $x \sim y$ iff $y = q \cdot x$ for some $q \in G$ modulo the
\nis a mfd of dimM/g = dim M ~ dim G.
\neq. $\mathbb{R}^{m+1} \setminus {s}^3 \underset{\mathbb{R}^*}{\mathbb{R}} (\simeq \mathbb{RP}^n)$, $S^{2n+1} \leq 1 (\simeq \mathbb{CP}^n)$, $\mathbb{CP}^{n+1} \cap (\simeq \mathbb{RP}^n)$
\n- GAM is called hancitive of them is only one orbit space.
\nThus, If G2M is transitive, where G is a cpt Lie group, then
\n $M = G \setminus {s}^3 \equiv G / G_s$.
\nSuch M is called a homogeneous space ($\mathbb{CP} \setminus \mathbb{R}^2$ in
\n $\mathbb{CP} \setminus \mathbb{R}^2$

2.9. (From Eve, O(v) =
$$
5
$$
 Ae GL(n) | AA^T = A^TA = 1/2 orthogonal matrix
(s a cpt Lie group of divn = $\frac{n(n-1)}{2}$.)

Consider $\int_{\mathbb{R}} Gr(k,n) = \int_{k} -\dim\operatorname{linear} \operatorname{subspaces} f(k^{n})$

Grassmannian

(over IR)

. On) acts on
$$
Gr_{\mathbb{R}}(k,n)
$$
 transitively.

• For
$$
\mathbb{R}^k \times \{0\} \in G_{\Gamma_{\mathbb{R}}}(k, u)
$$
, $O(u)_{\mathbb{R}^k \times \{0\}} = \{A \in O(u) | A \cdot (\mathbb{R}^k \times \{0\}) \in \mathbb{R}^k \times \{0\} \}$
\n
$$
\left(\begin{array}{c} k \times k \\ k \times k \\ \hline k \end{array}\right) \left(\begin{array}{c} e \\ e \\ 0 \end{array}\right) = \left(\begin{array}{c} \times e \\ \times e \\ \hline \{e\} \end{array}\right) \in \mathbb{R}^k \times \{0\} \implies \mathbb{Z} = 0
$$
\n
$$
\frac{(n-k)(n-k)}{A}
$$

$$
AA^{\tau} = \begin{pmatrix} X & Y \\ O & W \end{pmatrix} \begin{pmatrix} X^{\tau} & O \\ Y^{\tau} & W^{\tau} \end{pmatrix} = \begin{pmatrix} XX^{\tau} & YW^{\tau} \\ WY^{\tau} & WW^{\tau} \end{pmatrix} = \begin{pmatrix} 1_{k \times k} & O \\ O & 1_{(k-k) \times (n-k)} \end{pmatrix}
$$

$$
\Rightarrow Y=0 \text{ and } X \in O(k) \text{ and } W \in O(n-k)
$$
\n
$$
\text{Then, } O(n)_{R^{k}x^{l}y^{l}} = O(k) \times O(n-k).
$$
\n
$$
\text{Thus, } + \text{kuk above } \text{ imply } \text{ Gr}_{lk}(k,n) \approx \text{O}(k) \times O(n-k)
$$
\n
$$
\text{which is a } \text{maxifid of } \text{dim} = \frac{n(n-1)}{2} - (\frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2})
$$
\n
$$
= \frac{1}{2}(-2k^{2} + 2nk) \approx k(n-k).
$$
\n
$$
\text{In particular, when } k=1, \quad \text{Gr}_{lk}(1,n) = RP^{n-1} = (\frac{1}{2} \text{ times in } R^{n})
$$
\n
$$
\text{Gr}_{lk} \text{ Over } \mathbb{C}, \text{ argument above words and}
$$
\n
$$
\text{Gr}_{lk}(k,n) \approx \text{Out}(k) \times O(k-k)
$$
\n
$$
\text{In particular, } \text{Gr}_{lk}(1,n) \approx \text{Gr}_{lk}(1,n) \approx \text{Gr}_{lk} \text{ times in } \mathbb{C}^{n} \text{)}
$$